APORTES METODOLÓGICOS



Jerarquía de los sistemas
El objetivo de la teoría es la descripción y exploración de la relación entre los sistemas dentro de esta jerarquía.
Hay que distinguir "sistema" de "agregado". Ambos son conjuntos, es decir, entidades que se constituyen por la concurrencia de más de un elemento; la diferencia entre ambos consiste en que el sistema muestra una organización de la que carecen los agregados. Así pues, un sistema es un conjunto de partes interrelacionadas.

Los sistemas pueden ser:
  1. Sistemas Abiertos
    Se trata de sistemas que importan y procesan los elementos (energía, materia, información) de sus ambientes y esta es una característica propia de todos los sistemas vivos. Que un sistema sea abierto significa que establece intercambios permanentes con su ambiente, intercambios que determinan su equilibrio, capacidad reproductiva o continuidad, es decir, su viabilidad (entropía negativa, teleología, morfogénesis, equifinalidad).
    Los sistemas vivos son SISTEMAS ABIERTOS pues intercambian con su entorno energía e información. Ejemplos de éstos serían: una célula, una planta, un insecto, el hombre, un grupo social. La familia, por tanto, la consideraremos un Sistema Abierto.
    Los sistemas abiertos tienden hacia una evolución constante y un orden estructural, en contraposición a los cerrados en los que se da una tendencia a la indiferenciación de sus elementos y al desorden, hasta alcanzar una distribución uniforme de la energía.

  2. Sistemas Cerrados
    Un sistema es cerrado cuando ningún elemento de afuera entra y ninguno sale fuera del sistema. Estos alcanzan su estado máximo de equilibrio al igualarse con el medio (entropía, equilibrio). En ocasiones el término sistema cerrado es también aplicado a sistemas que se comportan de una manera fija, rítmica o sin variaciones, como sería el caso de los circuitos cerrados. Si no ocurre importación o exportación en ninguna de sus formas, como información, calor, materia física, etc. y por consiguiente sus componentes no se modifican. Ejemplo: una reacción química que tenga lugar en un recipiente sellado y aislado.


Al considerar los distintos tipos de sistemas del universo Kennet Boulding proporciona una clasificación útil de los sistemas donde establece los siguientes niveles jerárquicos:
  1. Primer nivel, estructura estática. Se le puede llamar nivel de los marcos de referencia.
  2. Segundo nivel, sistema dinámico simple. Considera movimientos necesarios y predeterminados. Se puede denominar reloj de trabajo.
  3. Tercer nivel, mecanismo de control o sistema cibernético. El sistema se autorregula para mantener su equilibrio.
  4. Cuarto nivel, "sistema abierto" o autoestructurado. En este nivel se comienza a diferenciar la vida. Puede de considerarse nivel de célula.
  5. Quinto nivel, genético-social. Está caracterizado por las plantas.
  6. Sexto nivel, sistema animal. Se caracteriza por su creciente movilidad, comportamiento teleológico y su autoconciencia.
  7. Séptimo nivel, sistema humano. Es el nivel del ser individual, considerado como un sistema con conciencia y habilidad para utilizar el lenguaje y símbolos.
  8. Octavo nivel, sistema social o sistema de organizaciones humanas constituye el siguiente nivel, y considera el contenido y significado de mensajes, la naturaleza y dimensiones del sistema de valores, la transcripción de imágenes en registros históricos, sutiles simbolizaciones artísticas, música, poesía y la compleja gama de emociones humanas.
  9. Noveno nivel, sistemas trascendentales. Completan los niveles de clasificación: estos son los últimos y absolutos, los ineludibles y desconocidos, los cuales también presentan estructuras sistemáticas e interrelaciones.


Teoría analógica o modelo de isomorfismo sistémico

Este modelo busca integrar las relaciones entre fenómenos de las distintas ciencias. La detección de estos fenómenos permite el armado de modelos de aplicación para distintas áreas de las ciencias.
Esto, que se repite en forma permanente, exige un análisis iterativo que responde a la idea de modularidad que la teoría de los sistemas desarrolla en sus contenidos.
Se pretende por comparaciones sucesivas, una aproximación metodológica, a la vez que facilitar la identificación de los elementos equivalentes o comunes, y permitir una correspondencia biunívoca entre las distintas ciencias.
Como evidencia de que existen propiedades generales entre distintos sistemas, se identifican y extraen sus similitudes estructurales.
Estos elementos son la esencia de la aplicación del modelo de isomorfismo, es decir, la correspondencia entre principios que rigen el comportamiento de objetos que, si bien intrínsecamente son diferentes, en algunos aspectos registran efectos que pueden necesitar un mismo procedimiento.



Modelo procesal o del sistema adaptativo complejo

Este modelo implica por asociación la aplicación previa del modelo del rango.
Dado que las organizaciones se encuentran dentro del nivel 8, critica y logra la demolición de los modelos existentes tanto dentro de la sociología como dentro de la administración.
Buckley, categoriza a los modelos existentes en dos tipos:
- aquellos de extracción y origen mecánico, a los que denomina modelo de equilibrio;
- aquellos de extracción y origen biológico, a los que llama modelos organísmicos u homeostáticos.

Y dice:
"...el modelo de equilibrio es aplicable a tipos de sistemas que se caracterizan por perder organización al desplazarse hacia un punto de equilibrio y con posterioridad tienden a mantener ese nivel mínimo dentro de perturbaciones relativamente estrechas. Los modelos homeostáticos son aplicables a sistemas que tienden a mantener un nivel de organización dado relativamente elevado a pesar de las tendencias constantes a disminuirlo. El modelo procesal o de sistema complejo adaptativo se aplica a los sistemas caracterizados por la elaboración o la evolución de la organización; como veremos se benefician con las perturbaciones y la variedad del medio y de hecho dependen de estas".
Mientras que ciertos sistemas tienen una natural tendencia al equilibrio, los sistemas del nivel 8 se caracterizan por sus propiedades morfogénicas, es decir que en lugar de buscar un equilibrio estable tienden a una permanente transformación estructural. Este proceso de transformación estructural permanente, constituye el pre-requisito para que los sistemas de nivel 8 se conserven en forma activa y eficiente, en suma es su razón de supervivencia.